jueves, 8 de abril de 2010

Que es un Cuasar (Quasar)


Palabra derivada de la frase Quasi Stellar Object (objeto casi estelar) creada en 1963 para definir una nueva clase de objetos celestes descubiertos en el transcurso de conjuntas observaciones ópticas y radioastronómicas.

Se trata de cuerpos celestes que tienen una apariencia estelar y que, en el telescopio, aparecen como débiles estrellitas; sin embargo, observadas con el radiotelescopio, muestran una emisión energética tan intensa como para ser comparable con la de una galaxia íntegra.

Los quásar muestran también un desplazamiento de las rayas espectrales hacia el rojo tan fuerte que, si este fenómeno tuviera que ser interpretado en términos de Expansión del Universo, ellos deberían estar animados con velocidades próximas a las de la luz y encontrarse en los extremos confines del Universo mismo, a miles de millones de años-luz de nosotros.

El primer quásar fue descubierto por el astrónomo Maarten Schmidt del observatorio de Mount Palomar (California), en 1963. El encontró una pequeñísima estrella cuya posición coincidía con la de una gran fuente de ondas de radio de tipo galáctico. El espectro de esta estrella era sin embargo muy especial: en efecto, mostraba un redshift elevadísimo.

Algunos quásar, visibles ópticamente, muestran, si se fotografían con largas exposiciones, una envoltura de gas alrededor del objeto central.

Que son los Agujeros Negros


Un agujero negro u hoyo negro es una región finita del espacio-tiempo provocada por una gran concentración de masa en su interior, con enorme aumento de la densidad, lo que genera un campo gravitatorio tal que ninguna partícula material, ni siquiera los fotones de luz, puede escapar de dicha región.

La curvatura del espacio-tiempo o «gravedad de un agujero negro» provoca una singularidad envuelta por una superficie cerrada, llamada horizonte de sucesos. Esto es debido a la gran cantidad de energía del objeto celeste. El horizonte de sucesos separa la región del agujero negro del resto del Universo y es la superficie límite del espacio a partir de la cual ninguna partícula puede salir, incluyendo la luz. Dicha curvatura es estudiada por la relatividad general, la que predijo la existencia de los agujeros negros y fue su primer indicio. En los años 70, Hawking, Ellis y Penrose demostraron varios teoremas importantes sobre la ocurrencia y geometría de los agujeros negros.[1] Previamente, en 1963, Roy Kerr había demostrado que en un espacio-tiempo de cuatro dimensiones todos los agujeros negros debían tener una geometría cuasi-esférica determinada por tres parámetros: su masa M, su carga eléctrica total e y su momento angular L.

Se cree que en el centro de la mayoría de las galaxias, entre ellas la Vía Láctea, hay agujeros negros supermasivos. La existencia de agujeros negros está apoyada en observaciones astronómicas, en especial a través de la emisión de rayos X por estrellas binarias y galaxias activas

Que es un Pulsar

Un púlsar es una estrella de neutrones que emite radiación periódica. Los púlsares poseen un intenso campo magnético que induce la emisión de estos pulsos de radiación electromagnética a intervalos regulares relacionados con el periodo de rotación del objeto.

Las estrellas de neutrones pueden girar sobre sí mismas hasta varios cientos de veces por segundo; un punto de su superficie puede estar moviéndose a velocidades de hasta 70.000 km/s. De hecho, las estrellas de neutrones que giran muy rápidamente se expanden en su ecuador debido a esta velocidad vertiginosa. El efecto combinado de la enorme densidad de estas estrellas con su intensísimo campo magnético (generado por los protones y electrones de la superficie girando alrededor del centro a semejantes velocidades) causa que las partículas que se acercan a la estrella desde el exterior (como, por ejemplo, moléculas de gas o polvo interestelar), se aceleren a velocidades extremas y realicen espirales cerradísimas hacia los polos magnéticos de la estrella. Por ello, los polos magnéticos de una estrella de neutrones son lugares de actividad muy intensa: emiten chorros de radiación en el rango del radio, rayos X o rayos gamma, como si fueran cañones de radiación electromagnética muy intensa y muy colimada.

Por razones aún no muy bien entendidas, los polos magnéticos de muchas estrellas de neutrones no están sobre el eje de rotación. El resultado es que los "cañones de radiación" de los polos magnéticos no apuntan siempre en la misma dirección, sino que rotan con la estrella.

Agujeros de Gusanos



En física, un agujero de gusano, también conocido como un puente de Einstein-Rosen y en malas traducciones "agujero de lombriz", es una hipotética característica topológica del espacio-tiempo, descrita por las ecuaciones de la relatividad general, la cual es esencialmente un "atajo" a través del espacio y el tiempo. Un agujero de gusano tiene por lo menos dos extremos, conectados a una única "garganta", pudiendo la materia 'viajar' de un extremo a otro pasando a través de ésta.


El primer científico en teorizar la existencia de agujeros de gusanos fue Ludwig Flamm en 1916. En este sentido la hipótesis del agujero de gusano es una actualización de la decimonónica teoría de una cuarta dimensión espacial que suponía -por ejemplo- dado un cuerpo toroidal en el que se podían encontrar las tres dimensiones espaciales comúnmente perceptibles, una cuarta dimensión espacial que abreviara las distancias, y así los tiempos de viaje. Esta noción inicial fue plasmada más científicamente en 1921 por el matemático Hermann Weyl en conexión con sus análisis de la masa en términos de la energía de un campo electromagnético.[1]

En la actualidad la teoría de cuerdas admite la existencia de más de 3 dimensiones espaciales (ver hiperespacio), pero las otras dimensiones espaciales estarían contractadas o compactadas a escalas subatómicas (según la teoría de Kaluza-Klein) por lo que parece muy difícil (diríase "imposible") aprovechar tales dimensiones espaciales "extra" para viajes en el espacio y en el tiempo.

Choque de Agujeros Negros



En el siguiente video sepuede odservar un choque de agujeros y lo que pudiera suceder en un caso muy lejano ciertos sientificos simularon el choque de estas dos agujeros negros mediante computadoras.

Estrellas Canivales

En las estrellas de tipo solar, cuando llegan a la etapa final de sus vidas, se expanden ocupando varias unidades astronómicas de diámetro (1 UA = distancia Tierra-Sol). La estrella convertida en gigante roja, engulluría a los planetas que estuvieran orbitando en las proximidades. Esto desencadenaría ciertos efectos observables en en sol. En primer lugar, según los cálculos realizados por Livio, la energía gravitacional del planeta absorvida por la estrella aumenta el brillo y diámetro. Esto incrementa las capas de polvo en expansión, radiando cantidades excesivas de luz infrarroja.
Además, el planeta devorado transfiere momento angular a la estrella. El momento angular es una medida que tiene en cuenta la energía contenida en la velocidad y masa de un objeto. El ejemplo que suele servir a los libros de texto es el del patinador. Cuando girando sobre sí mismo, el patinador mantiene sus brazos extendidos rota de forma más lenta, pero cuando los recoge sobre su cuerpo, gira a mayor velocidad. Este efecto se denomina "conservación del momento angular". En el Sistema Solar, el 98% del momento angular están en Júpiter y Saturno. Al tragarse la estrella adquiere la energía del momento angular contenido en el planeta, de forma que su rotación se incrementa.

Finalmente, aparece el litio (Li). Este elemento simple de la tabla periódica se destruye a temperaturas de unos pocos millones de grados en los estadios preliminares de cualquier estrella. Los astrofísicos se ayudan de este fenómeno para localizar a las enanas marrones, esos planetas gigantescos que en realidad son estrellas abortadas que no pudieron fusionar elementos en su interior.

Mario Livio y Lionel Siess opinan que en nuestro Sistema Solar no se darán las condiciones necesarias para que el Sol engulla, dentro de 4500 millones de años a Júpiter o Saturno aunque sí a Mercurio, Venus y quizás, la Tierra... ¡Sálvese quien pueda!

La muerte del Sol


Mientras que la cantidad de hidrógeno disponible es grande, la vida de la estrella transcurre apaciblemente. El Sol, en este momento, se encuentra en esa fase de su existencia. Pero nada dura para siempre, y el combustible estelar tarde o temprano se termina. Cuando una estrella comienza a agotar su reserva de hidrógeno, el helio formado a lo largo de millones de años comienza a interferir en el proceso. Incluso puede darse el caso de que las reacciones termonucleares se detengan. Los físicos llaman a este proceso “envenenamiento por helio”. Esto hace que la cantidad de energía que se produce en su interior descienda abruptamente, por lo que la presión original que la mantenía “de pie” disminuye a niveles –comparativamente hablando- casi ridículos. La estrella se contrae por los efectos gravitatorios, y su temperatura aumenta. En ese momento el Sol dejará de ser una bestia mansa que nos proporciona luz y calor para convertirse en algo bastante más peligroso. Alrededor del núcleo de helio caliente y denso comienza a quemarse el hidrógeno restante, pero en “capas” cada vez más externas. Como resultado, la estrella comienza un nuevo proceso de expansión. Si bien su núcleo se mantiene muy caliente, las capas exteriores se van enfriando y su color comienza a virar hacia el rojo. Dentro de unos cinco mil millones de años –más te vale ir poniendo en orden tus asuntos- el Sol atravesará esta etapa y se convertirá en una gigante roja.

Lamentablemente no se trata solo de un pequeño cambio estético o de color. El Sol aumentará tanto su tamaño que sobrepasará las orbitas de Mercurio (con seguridad) y de Venus (muy probablemente). Esos dos planetas del Sistema Solar serán historia al acabar dentro del Sol. Por supuesto, en la Tierra ya no habrá nadie para que “disfrute” del espectáculo porque mucho tiempo antes, unos 800 millones de años a partir de hoy, el progresivo aumento en la temperatura del Sol habrá hecho que nuestro planeta tenga temperaturas medias de unos 150 grados Celsius. Finalmente, en unos 7 mil millones de años, el Sol engullirá a la Tierra y la Luna. Dentro de miles de millones de años más. Totalmente ajeno a nuestros problemas, las transformaciones en el interior del Sol seguirán su inexorable curso.

La Muerte de una Estrella

Una nube de gas, si es lo suficientemente grande, comienza a contraerse. La densidad y la temperatura aumentan, de manera que la fusión nuclear puede comenzar. Esto es cuando el Hidrógeno se convierte en Helio. Al "quemarse" el Hidrógeno, la contracción se detiene. En este momento, el gas se convierte en estrella. Este es el estado en que se encuentra nuestro Sol.

Después de billones de años, la mayoría del hidrógeno combustible se ha "quemado", y la estrella comienza a contraerse de nuevo. La estrella tiene que usar otro combustible, el Helio.

La etapa siguiente en la vida de una estrella se llama gigante roja. La estrella es ahora mucho mayor que al principio. Cuando a la estrella roja gigante se le acaba el combustible, la estrella comienza a contraerse nuevamente. Esta contracción calienta mucho el núcleo de la estrella, de manera que se forman elementos más pesados . Cuando a la estrella se le acaba este último tipo de combustible, ha llegado al final de su vida.

La estrella comienza a desprender capas porque no puede contenerlas por mas tiempo. Esto se llama nebulosa planetaria. El centro de la estrella se convierte en una enana blanca. Esta es una estrella extremadamente densa que tiene el tamaño de un planeta. Finalmente, cuando la enana blanca ha utilizado toda su energía, para de brillar y se convierte en una "enana negra", es decir, una estrella muerta. Se espera que esta sea la última etapa de nuestro Sol.

Para las estrellas con masas mayores que el Sol (hasta 40 veces más grandes), las capas externas de la estrella pueden ser arrojadas con más fuerza. Esto es una supernova. Este tipo de estrella colapsa a un tamaño muy compacto. A esto es lo que le llaman una "estrella neutrónica". Las estrellas más de 40 veces mayores que el Sol pueden convertirse en un "agujero negro" .